90 research outputs found

    Epithelial acetylcholine - a new paradigm for cholinergic regulation of intestinal fluid and electrolyte transport.

    Get PDF
    Epithelial acetylcholine - a new paradigm for cholinergic regulation of intestinal fluid and electrolyte transport

    Physiological concentrations of bile acids down-regulate agonist induced secretion in colonic epithelial cells

    Get PDF
    In patients with bile acid malabsorption, high concentrations of bile acids enter the colon and stimulate Cl− and fluid secretion, thereby causing diarrhoea. However, deoxycholic acid (DCA), the predominant colonic bile acid, is normally present at lower concentrations where its role in regulating transport is unclear. Thus, the current study set out to investigate the effects of physiologically relevant DCA concentrations on colonic epithelial secretory function. Cl− secretion was measured as changes in short-circuit current across voltage-clamped T84 cell monolayers. At high concentrations (0.5–1 mM), DCA acutely stimulated Cl− secretion but this effect was associated with cell injury, as evidenced by decreased transepithelial resistance (TER) and increased lactate dehydrogenase (LDH) release. In contrast, chronic (24 hrs) exposure to lower DCA concentrations (10–200 μM) inhibited responses to Ca2+ and cAMP-dependent secretagogues without altering TER, LDH release, or secretagogue-induced increases in intracellular second messengers. Other bile acids – taurodeoxycholic acid, chenodeoxycholic acid and cholic acid – had similar antisecretory effects. DCA (50 μM) rapidly stimulated phosphorylation of the epidermal growth factor receptor (EGFr) and both ERK and p38 MAPKs (mitogen-activated protein kinases). The EGFr inhibitor, AG1478, and the protein synthesis inhibitor, cycloheximide, reversed the antisecretory effects of DCA, while the MAPK inhibitors, PD98059 and SB203580, did not. In summary, our studies suggest that, in contrast to its acute prosecretory effects at pathophysiological concentrations, lower, physiologically relevant, levels of DCA chronically down-regulate colonic epithelial secretory function. On the basis of these data, we propose a novel role for bile acids as physiological regulators of colonic secretory capacity

    Chronic regulation of colonic epithelial secretory function by activation of G protein-coupled receptors.

    Get PDF
    BACKGROUND: Enteric neurotransmitters that act at G protein-coupled receptors (GPCRs) are well known to acutely promote epithelial Cl(-) and fluid secretion. Here we examined if acute GPCR activation might have more long-term consequences for epithelial secretory function. METHODS: Cl(-) secretion was measured as changes in short-circuit current across voltage-clamped T(84) colonic epithelial cells. Protein expression was measured by western blotting and intracellular Ca(2+) levels by Fura-2 fluorescence. KEY RESULTS: While acute (15 min) treatment of T(84) cells with a cholinergic G(q) PCR agonist, carbachol (CCh), rapidly stimulated Cl(-) secretion, subsequent CCh-induced responses were attenuated in a biphasic manner. The first phase was transient and resolved within 6 h but this was followed by a chronic phase of attenuated responsiveness that was sustained up to 48 h. CCh-pretreatment did not chronically alter responses to another G(q)PCR agonist, histamine, or to thapsigargin or forskolin which elevate intracellular Ca(2+) and cAMP, respectively. This chronically acting antisecretory mechanism is not shared by neurotransmitters that activate G(s)PCRs. Conditioned medium from CCh-pretreated cells mimicked its chronic antisecretory actions, suggesting involvement of an epithelial-derived soluble factor but further experimentation ruled out the involvement of epidermal growth factor receptor ligands. Acute CCh exposure did not chronically alter surface expression of muscarinic M(3) receptors but inhibited intracellular Ca(2+) mobilization upon subsequent agonist challenge. CONCLUSIONS \u26 INFERENCES: These data reveal a novel, chronically acting, antisecretory mechanism that downregulates epithelial secretory capacity upon repeated G(q)PCR agonist exposure. This mechanism involves release of a soluble factor that uncouples receptor activation from downstream prosecretory signals

    Ursodeoxycholic acid and lithocholic acid exert anti-inflammatory actions in the colon

    Get PDF
    Inflammatory bowel diseases (IBD) comprise a group of common and debilitating chronic intestinal disorders for which currently available therapies are often unsatisfactory. The naturally occurring secondary bile acid, ursodeoxycholic acid (UDCA), has well-established anti-inflammatory and cytoprotective actions and may therefore be effective in treating IBD. We aimed to investigate regulation of colonic inflammatory responses by UDCA and to determine the potential impact of bacterial metabolism on its therapeutic actions. The anti-inflammatory efficacy of UDCA, a nonmetabolizable analog, 6 alpha-methyl-UDCA (6-MUDCA), and its primary colonic metabolite lithocholic acid (LCA) was assessed in the murine dextran sodium sulfate (DSS) model of mucosal injury. The effects of bile acids on cytokine (TNF-alpha, IL-6, Il-1 beta, and IFN-alpha) release from cultured colonic epithelial cells and mouse colonic tissue in vivo were investigated. Luminal bile acids were measured by gas chromatography-mass spectrometry. UDCA attenuated release of proinflammatory cytokines from colonic epithelial cells in vitro and was protective against the development of colonic inflammation in vivo. In contrast, although 6-MUDCA mimicked the effects of UDCA on epithelial cytokine release in vitro, it was ineffective in preventing inflammation in the DSS model. In UDCA-treated mice, LCA became the most common colonic bile acid. Finally, LCA treatment more potently inhibited epithelial cytokine release and protected against DSS-induced mucosal inflammation than did UDCA. These studies identify a new role for the primary metabolite of UDCA, LCA, in preventing colonic inflammation and suggest that microbial metabolism of UDCA is necessary for the full expression of its protective actions.NEW & NOTEWORTHY On the basis of its cytoprotective and anti-inflammatory actions, the secondary bile acid ursodeoxycholic acid (UDCA) has well-established uses in both traditional and Western medicine. We identify a new role for the primary metabolite of UDCA, lithocholic acid, as a potent inhibitor of intestinal inflammatory responses, and we present data to suggest that microbial metab-olism of UDCA is necessary for the full expression of its protective effects against colonic inflammation

    Fluorescently tagged star polymers by living radical polymerisation for mucoadhesion and bioadhesion

    Get PDF
    The synthesis of 3-, 5- and 8-arm dimethylaminoethyl methacrylate star polymers are reported, final Mn (PDI) = 12.2 K (1.09), 18.9K (1.10) and 38.4 K (1.11), respectively. The synthesis of 3-arm methyl methacrylate and dimethylaminoethyl methacrylate block co-polymer stars is also described. Living polymerisation occurred in all cases providing well defined stars with predictable molecular weights and narrow polydispersity. A fluorescent tag, 2-(8-methacryloyloy-3,6-dioxaoctyl)thioxantheno[2,1,9-dej]isoquinoline-1,3-dione, derived from a commercially available pigment, was incorporated into the star polymers. The fluorescence spectra of the polymers prepared were recorded over a range of pH and the peak emission frequency and intensity have been reported, λex = 462 nm. All of the multi-arm polymers exhibit fluorescence across a broad pH range with maximum emission at pH 4. A 3-arm star polymer has been demonstrated to show good bioadhesion in rat tissue. A reduced adhesion in epithelial tissues not covered by a viscoelastic mucus gel indicates an increased tendency for mucoadhesion over bioadhesion.We thank Clariant for the kind donation of the hostasol precursor and Genzyme for part funding this work. D.M. Haddleton would also like to thank Professor John Ebdon for all of his encouragement and support throughout his academic career

    The Secondary Bile acids, Ursodeoxycholic acid and Lithocholic Acid, Protect Against Intestinal Inflammation by Inhibition of Epithelial Apoptosis

    Get PDF
    Increased epithelial permeability is a key feature of IBD pathogenesis and it has been proposed that agents which promote barrier function may be of therapeutic benefit. We have previously reported the secondary bile acid, ursodeoxycholic acid (UDCA), to be protective in a mouse model of colonic inflammation and that its bacterial metabolism is required for its beneficial effects. The current study aimed to compare the effects of UDCA, LCA, and a non-metabolizable analog of UDCA, 6-methyl-UDCA (6-MUDCA), on colonic barrier function and mucosal inflammation in a mouse model of colonic inflammation. Bile acids were administered daily to C57Bl6 mice by intraperitoneal injection. Colonic inflammation, induced by addition of DSS (2.5%) to the drinking water, was measured as disease activity index (DAI) and histological score. Epithelial permeability and apoptosis were assessed by measuring FITC-dextran uptake and caspase-3 cleavage, respectively. Cecal bile acids were measured by HPLC-MS/MS. UDCA and LCA, but not 6-MUDCA, were protective against DSS-induced increases in epithelial permeability and colonic inflammation. Furthermore, UDCA and LCA inhibited colonic epithelial caspase-3 cleavage both in DSS-treated mice and in an in vitro model of cytokine-induced epithelial injury. HPLC-MS/MS analysis revealed UDCA administration to increase colonic LCA levels, whereas LCA administration did not alter UDCA levels. UDCA, and its primary metabolite, LCA, protect against intestinal inflammation in vivo, at least in part, by inhibition of epithelial apoptosis and promotion of barrier function. These data suggest that clinical trials of UDCA in IBD patients are warranted

    Dietary Supplementation with Soluble Plantain Non-Starch Polysaccharides Inhibits Intestinal Invasion of Salmonella Typhimurium in the Chicken

    Get PDF
    Soluble fibres (non-starch polysaccharides, NSP) from edible plants but particularly plantain banana (Musa spp.), have been shown in vitro and ex vivo to prevent various enteric pathogens from adhering to, or translocating across, the human intestinal epithelium, a property that we have termed contrabiotic. Here we report that dietary plantain fibre prevents invasion of the chicken intestinal mucosa by Salmonella. In vivo experiments were performed with chicks fed from hatch on a pellet diet containing soluble plantain NSP (0 to 200 mg/d) and orally infected with S.Typhimurium 4/74 at 8 d of age. Birds were sacrificed 3, 6 and 10 d post-infection. Bacteria were enumerated from liver, spleen and caecal contents. In vitro studies were performed using chicken caecal crypts and porcine intestinal epithelial cells infected with Salmonella enterica serovars following pre-treatment separately with soluble plantain NSP and acidic or neutral polysaccharide fractions of plantain NSP, each compared with saline vehicle. Bacterial adherence and invasion were assessed by gentamicin protection assay. In vivo dietary supplementation with plantain NSP 50 mg/d reduced invasion by S.Typhimurium, as reflected by viable bacterial counts from splenic tissue, by 98.9% (95% CI, 98.1–99.7; P<0.0001). In vitro studies confirmed that plantain NSP (5–10 mg/ml) inhibited adhesion of S.Typhimurium 4/74 to a porcine epithelial cell-line (73% mean inhibition (95% CI, 64–81); P<0.001) and to primary chick caecal crypts (82% mean inhibition (95% CI, 75–90); P<0.001). Adherence inhibition was shown to be mediated via an effect on the epithelial cells and Ussing chamber experiments with ex-vivo human ileal mucosa showed that this effect was associated with increased short circuit current but no change in electrical resistance. The inhibitory activity of plantain NSP lay mainly within the acidic/pectic (homogalacturonan-rich) component. Supplementation of chick feed with plantain NSP was well tolerated and shows promise as a simple approach for reducing invasive salmonellosis
    corecore